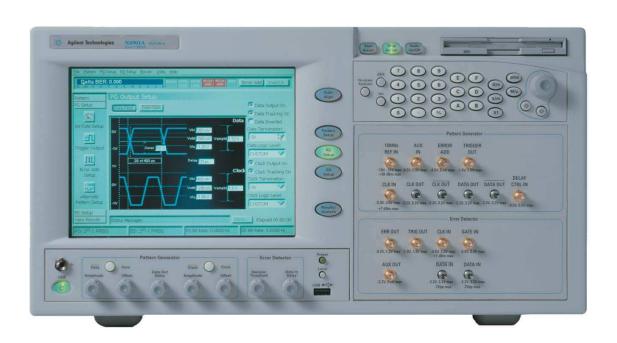

N4901B SerialBERT 13.5 Gb/s



Data Sheet

Version 2.05

General

The N4901B SerialBERT 13.5 Gb/s operates within a range from 150 Mb/s up to 13.5 Gb/s. Available configurations are:

- · one Pattern Generator and one Error Detector
- · one Pattern Generator only
- · one Error Detector only

Key values & Benefits

- · Range of operation 150 Mb/s to 13.5 Gb/s
- · Jitter Injection, Jitter Tolerance measurement capabilities
- · True differential data generation and analysis
- · 4 CDR ranges at 1 Gb/s, 3 Gb/s, 6 Gb/s and 10 Gb/s
- · Intuitive, state-of-the-art Windows XP. touchscreen user interface
- · Inter-operability between N4901B and other instruments
- · Compatibility with existing remote commands e.g. Agilent 71612 and 86130A Series
- · Signal integrity
- · Fastest transition times

Pattern Generator

- · Pattern generation for PRBS or memory based patterns
- · Flexible levels addressing a broad range of technologies, e.g. ECL, PECL (3.3V), LVDS, CML, SCFL

Error Detector

- · BER Measurements
- · Automatic Threshold
- · Sampling Point
- · Data Polarity
- · G. 821 Measurement
- · Measurement Suite
- · Auto Alignment

Measurement features

- · Output Timing Jitter
- · Spectral Jitter
- · Output Level
- · Bit Error Rate
- · Fast Eye Mask
- · Eye Opening
- · Error Location Capture

Display

8" color LCD touchscreen

Data Entry

Touch-screen display, numeric keypad with up/down arrows, dial-knob control or external keyboard and mouse via USB interface.

Page 2/10

Hard Disk

For local storage of user patterns and data. External disk via USB interface also available.

Removable Storage

- · Floppy Disk Drive 1.44 MB
- · USB Stick

Online Help

For comprehensive software support

Interfaces

GPIB (IEEE 488), LAN, parallel printer port, VGA output, 4 x USB 2.0, 1 x USB 1.1 ports

User Interface

The time needed to set up the first measurement is minimised based on intuitive and easy-to-learn interfaces.

The "N4901B SerialBERT 13.5 Gb/s" User Interface is easily fitted to a variety of applications. In addition, the optimized measurement suite guarantees an immediate return on investment.

The User Interface provides the following functions:

- · Pattern Generator Setup
- · Error Setup Analyser / Detector
- · Pattern Editor
- · Measurement Results
- · Analyzes

By utilizing network capabilities, N4901B SerialBERT is remote controllable via LAN, GPIB and USB interface. Test executives can control the system by using National Instruments' LabVIEW, Agilent TestExec, and Microsoft® Excel or Visual Basic.

Examples for Results Screens

The Pattern Generator screen allows simple access to timing & level parameters, as seen below.

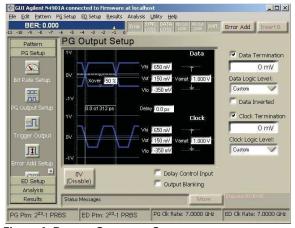


Figure 1: Pattern Generator Setup

The Sampling Point Setup allows simple access to Sampling Point Position referring to timing point threshold.

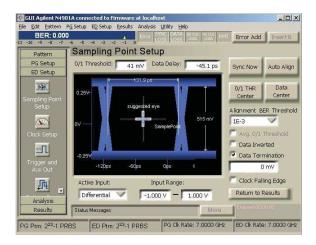


Figure 2: Error Detector Setup

The Pattern Editor allows the operator to deal with user-specific data.

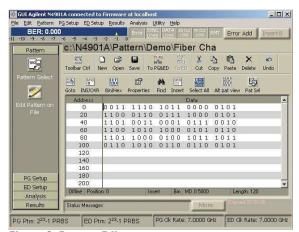


Figure 3: Pattern Editor

The diagram below shows bit error results based on CCITT Ref. G.821.

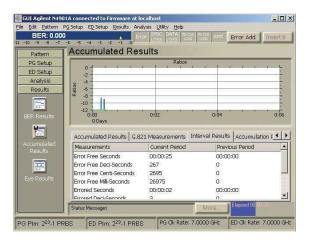


Figure 4: G.821 Results

Measurement Suite

The "Advanced Analysis" Measurement Suite of the SerialBERT 13.5 Gb/s offers comprehensive analysis features, detailed insight for design verification and efficient pass/fail testing in manufacturing. All tools are used with a data range higher than 620 Mb/s.

Spectral Jitter Decomposition (see Fig. 5)

It includes a measurement for the spectral decomposition of jitter components. The decomposition technique allows inband- and outband-characterization of circuits and devices including PLLs and CDRs. While debugging designs, the new measurement allows the exploration of the various components of deterministic jitter.

BERT Scan incl. Rj / Dj separation (see Fig. 6)

This measurement shows the BER of the DUT's output versus sample point delay, which is displayed as a curve with BER vs. sample delay and threshold. Available results are setup/hold time, phase margin, Jitter incl. extrapolation of total jitter (rms, peak-to-peak) and RJ/DJ Separation. The output timing measurement is available as a bathtub plot and as a histogram. This provides measurement of RJ, DJ and Total Jitter. The measurement method is equivalent to the IEEE 802.3ae method. In order to guarantee the validity of the measurement, a "quality of fit" value is also provided.

Output Level and Q Factor (see Fig. 7)

Figure 7 shows the sample BERT delay corresponding to the threshold. Available results are Q Factor, table.

Eye Contour (see Fig. 8)

For device characterization the eye opening measurement generates a bit error rate (BER) diagram as a function of the sample delay and the sample threshold. Besides the eye opening, the eye contour measurement provides results for the optimum sample point. The eye opening measurement allows selecting different views such as eye contour, pseudo color and equal BER plots.

Fast Eye Mask

For fast pass/fail testing in manufacturing, this measurement checks up to 32 points, equivalent to mask testing.

Error Location Capture

The Error Location Capture measurement allows to capture the actual position of errored bits in a memory-based pattern. This measurement can be used to find rare or random errors.

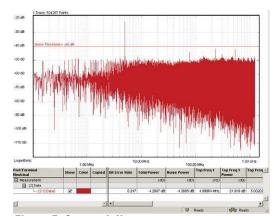


Figure 5: Spectral Jitter

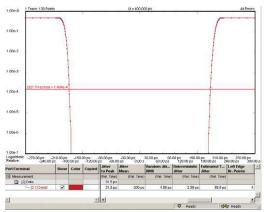


Figure 6: BERT Scan incl. Ri/Di Separation

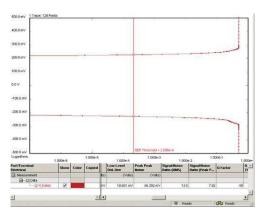


Figure 7: Output Level & Q Factor

Figure 8: Eye Contour

Pattern Generator

Figure 9: Front View of Pattern Generator

Waveform examples for Differential Data Output

Pulse Performance Measurement allows different amplitude voltages with variable amplitudes from 0.1V...1.8V, output voltage. The window makes -2V...3.0V possible and a variable delay. An example is shown in Figure 10.

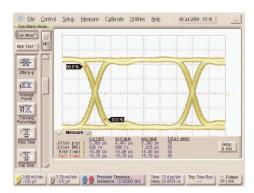


Figure 10: 50% Signals

Features:

- · Polarity normal or inverted data
- · Data high level adjust
- · Data amplitude adjust
- · Clock/Data relative delay adjustment
- · Vertical data-eye cross-over adjust
- · Output blanking (disabling)
- · Error add
- · Delay control input
- · Trigger Output
- · Alternating Pattern

Data Output

Table 1: Parameters for SerialBERT 13.5 Gb/s Generator All timing parameters are measured at ECL levels

<u> </u>		
Range of operation:	150 Mb/s to 13.5 Gb/s	
Interface	Differential or single-ended	(1)
	DC coupled, 50Ω	
Format	NRZ, normal or inverted	
Amplitude/Resolution	0.10 V to 1.8 V 5 mV steps	
Output voltage window	-2.0 V to +3.0 V	
Predefined Levels	ECL, PECL (3.3V), LVDS, CML	
Transition times		
(20% to 80%)	< 20 ps	
(10% to 90%)	< 25 ps	(2)
Jitter	9 ps pp typical	
Clock/data delay	±0.75 ns	
Resolution	100 fs	
External termination voltage	-2V to +3V	(3)
Crossing point of adjustment	20%80% typical	
Single Error Inject	Adds single errors on demand	
Fixed Error Inject	Fixed error ratios of 1 error in	10 ⁿ
	bits, n = 3, 4, 5, 6, 7, 8, 9	
Connector	2.4 mm female	

- (1) Unused outputs must be terminated with 50Ω to GND.
- (2) At 10Gb/s
- (3) For positive termination voltage or termination to GND, external termination voltage must be less than 3V below VOH. For negative termination voltage, external termination voltage must be less than 2V below VOH. External termination voltage must be less than 3V above VOL.

Clock Output

Table 2: Parameters for N4901B SerialBERT 13.5 Gb/s Generator All timing parameters are measured at ECL levels

Clock Output	Differential or single-ende	d.
	DC coupled 50Ω ,	(1)
Frequency	150 MHz - 13.5 GHz	
Impedance	50Ω typ.	
Amplitude/Resolution	0.1Vpp to 1.8 Vpp 5mV sto	eps
Output voltage window	-2.00 to +2.8 V	
Short circuit current	72 mA max.	
Transition times		
(20% to 80%)	< 20 ps	
(10% to 90%)	< 25ps	(2)
Addressable technologies	LVDS, CML	
	PECL; ECL (terminated to	
	1.3V/0 V/-2 V) low voltage	CMOS
External termination voltage	-2V to +3V	(3)
Jitter	1 ps RMS typ.	
SSB phase noise	< - 75 dBc with internal clock source	
(10GHz@ 10kHz offset, 1Hz bandwidth)		
Connector	2.4 mm female	

- (1) Unused outputs must be terminated with 50 Ω to GND.
- (2) At 10Gb/s
- (3) For positive termination voltage or termination to GND, external termination voltage must be less than 3V below VOH. For negative termination voltage, external termination voltage must be less than 2V below VOH. External termination voltage must be less than 3V above VOL.

10 MHz Reference Input

A 10 MHz reference signal can be applied from which the internal clock is derived.

Table 3: Specifications

Interface	AC coupled, 50Ω nominal
Amplitude	200 mV to 2 V
Connector	SMA female

Clock Scheme

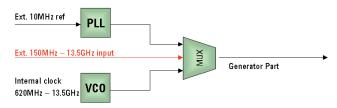


Figure 11: Block Diagram for the Clock Section

Three clock paths are possible:

- · 10 MHz Ref. Input used to synchronise SerialBERT 13.5 Gb/s with other equipment at 10 MHz
- Ext. Clock Input operates from 150 MHz to 13.5 GHz. This allows the input of a FM modulated clock for Jitter Transfer or Jitter Tolerance measurements
- · Internal clock operates from 620 MHz to 13.5 GHz

Clock Input

Table 4: Clock Input

Frequency range	150 MHz to 13.5 GHz
Interface	AC coupled, 50Ω nominal
Amplitude	150 mV to 2 V
Connector	SMA female

Trigger Output

This provides an electrical trigger synchronous with the pattern for use with an oscilloscope or other test equipment. There is a delay of 32ns typical for data rates \geq 620 Mb/s between trigger and data output. It operates in two modes: pattern trigger and divided clock trigger.

Pattern Trigger Mode

For PRBS patterns the pulse is synchronized with a user specified trigger pattern. The repetition rate is 1 pulse for every 4th pattern.

Divided Clock Mode

In divided clock mode the trigger is a square wave at the clock rate divided by 2, 4, 8, 10, 16, 20, 32, 40, 64, 128.

Table 5: Specifications

Table of openineations	
Pulse width	Square wave
Levels	High: +0.5 V; Low -0.5 V typ.
Transition times	35 ps typical
Interface	DC coupled, 50Ω nominal
Connector	SMA famala

Page 6/10

Auxiliary Input

This input can be used to control user programmable, alternate test patterns or inhibit data output (force the output data to a fixed low level). When Alternate Pattern Mode is selected the instrument will output one of two patterns (A or B). The auxiliary input controls which pattern is output. Switching between patterns is at the end of a pattern and is 'hitless' (error free). In this case the input is either Edge Sensitive (one shot) or Level Sensitive (continuous).

Mode 1: One-shot Edge Sensitive Alternating Pattern

A rising edge on the auxiliary input inserts a single version of pattern B into repetitions of pattern A.

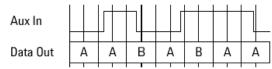


Figure 12: Edge Sensitive

Mode 2: Level Sensitive Alternate Pattern (continuous)

The logic state of the signal at the auxiliary input determines which pattern is output. An active (TTL high) signal will output Pattern B.

Figure 13: Level Sensitive

Mode 3: Output Blanking

The auxiliary input may also be used to inhibit the data output signal. If Alternate Pattern mode is not selected, an active (TTL high) signal at the auxiliary input port forces (gates) the data to a logic zero at the next 32-bit boundary in the pattern.

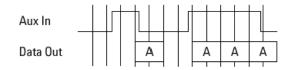


Figure 14: Output Blanking

Minimum Pulse Width time depends on:

Mode 1: 512 bit

Mode 2: rolled out pattern length (see user guide)

Mode 3: 100ns

Table 6: Specifications

Interface	DC coupled, 50Ω nominal
Levels	TTL levels
Connector	SMA female

Patterns

PRBS (HW Generated)

- $\cdot 2^{31}$ 1 Polynomial: $x^{31} + x^{28} + 1 = 0$ (inverted)
- $\cdot 2^{23}$ 1 Polynomial: $x^{23} + x^{18} + 1 = 0$ (inverted) (ITU-T 0.151)
- $\cdot 2^{15}$ 1 Polynomial: $x^{15} + x^{14} + 1 = 0$ (inverted) (ITU-T 0.151)
- · 2^{11} 1 Polynomial: $x^{11} + x^9 + 1 = 0$ (inverted) (ITU-T 0.152)
- · 2^{10} 1 Polynomial: $x^{10} + x^7 + 1 = 0$ (inverted)
- $\cdot 2^7 1$ Polynomial: $x^7 + x^6 + 1 = 0$ (inverted) (ITU-T V.29)

Zero Substitution

Zeros can be substituted for data to extend the longest run of zeros in the patterns below. The longest run can be extended to the pattern length -1. The bit following the substituted zeros is set to 1.

Variable Mark Density

The ratio of ones to total bits in the patterns below can be set to 1/8, 1/4, 1/2, 3/4, or 7/8.

Available test patterns for zero and variables:

- · 8388608 bits based on 223 PRBS
- \cdot 32768 bits based on 2^{15} PRBS
- · 8192 bits based on 213 PRBS
- \cdot 2048 bits based on 2^{11} PRBS
- · 1024 bits based on 210 PRBS
- · 128 bits based on 27 PRBS

User-programmable Test Patterns

User defined patterns are available with variable length from 1 bit to 33,554,432 bits (32 Mbit).

Alternate Test Pattern

Switch between two equal length user programmable patterns, each up to 16,777,216 bits (16 Mbit). Switching is possible by using a front panel key, GP-IB or the auxiliary input port. Changeover is synchronous with the end of the pattern. The length of the alternating patterns should be a multiple of 512 bits. Two methods of controlling pattern changeover are available: one-shot and alternate.

External Error Inject Input

The external "Error Inject Input" adds a single error to the data output for each rising edge at the input.

Table 7: Specifications

Interface	DC coupled, 50Ω nominal
Levels	TTL compatible
Connector	SMA female

Delay Control Input

The delay control modulates the delay of the data ouputs.

Table 8: Specifications

Interface	DC coupled, 50Ω nominal
Input Voltage Window	-250 mV to +250 mV
Delay Range	-100 ps to +100 ps @ 10.5 Gb/s
Modulation Bandwidth	DC to 1 GHz
Connector	SMA female

Modulation

Modulation operates between 150 and 13.5 Gb/s. It is a linear function that allows diverse signal distortions to be added.

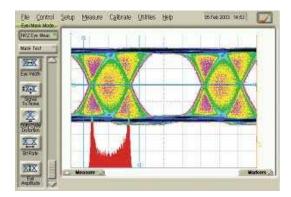


Figure 15: Sinusoidal Jitter

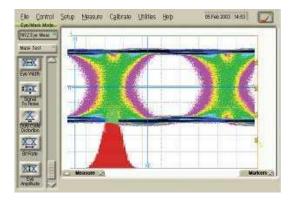


Figure 16: Random Jitter

Error Detector

Figure 17: Front view Error Detector

Data Input

Features:

- Differential data inputs
- Data polarity normal or inverted data.
- Clock/Data delay adjust.
- Clock/Data auto-alignment.
- 0/1 decision threshold auto-alignment.
- Clock data recovery (CDR) for selected frequency ranges or ext. clock

Table 9: Parameters for N4901B Error Detector

150 M/L /- 4- 10 5 CL /-	
Single-ended: 50Ω , typ.	(1)
Differential: 100Ω typ.	
-2 V to +3 V or off (true	
differential mode)	(1)
NRZ	
2.0 V	
<50 mV pp	(2)
-2 V to +3 V in 0.1 mV ste	ps
-2.2V to +3.2V	
1UI - 12ps typical	(3)
±0.75 ns in 100 fs steps	
Loop bandwidth [typ.]	
8 MHz	
4 MHz	
2 MHz	
1 MHz	
	-2 V to +3 V or off (true differential mode) NRZ 2.0 V <50 mV pp -2 V to +3 V in 0.1 mV ste -2.2V to +3.2V 1UI - 12ps typical ±0.75 ns in 100 fs steps Loop bandwidth [typ.] 8 MHz 4 MHz 2 MHz

The CDR works with specified PRBS patterns up to 2^31-1,

The CDR expects a DC balanced pattern,

The CDR expects a transition density of one transition for every second bit.

CDR Output Jitter	0.01 UI _{rms} typical
Connector	2.4 mm female

- (1) User has to define a 2V operating voltage window, which is in the range between -2.0 V to +3.0 V. Data signals, termination voltage and decision threshold have to be within this voltage window.
- (2) @ 10 Gb/s, BER 10⁻¹², PRBS 2³¹ -1.
- (3) Based on internal clock

Clock Input

Table 10: Specifications

Frequency range	150 MHz to 13.5 GHz
Interface	AC coupled, 50Ω nominal
Amplitude	100 mV to 1.2 V
Connector	SMA female

Pattern Trigger Mode

This provides an electrical trigger synchronous with the selected error detector reference pattern. In pattern mode the pulse is synchronized to repetitions of the output pattern. For PRBS patterns the repetition rate is 1 pulse for every 4th pattern repetition

Divided Clock Mode

In divided clock mode the trigger is a square wave.

Table 11: Specifications

Clock Divider	4, 8, 16 up to 11Gb/s
Clock Divider	32, 40, 64, 128 up to 13.5Gb/s
Interface	DC coupled, 50 Ω nominal
Levels	High: + 0.5 V; Low: - 0.5 V
Minimum pulse width	pattern length x clock period/2
	e.g. 10Gb/s with 1000 bits = 50 ns
Connector	SMA female

Errors Output

This provides an electrical signal to indicate received errors. The output is the logical 'OR' of errors in a 128-bit segment of the data.

Table 12: Specifications

RZ, active high
DC coupled, 50Ω nominal
High: 1V nominal; Low: 0 V nominal
128 clock periods
SMA female

Gating Input

The Gating Input is used to enable the error counters including during burst gating mode. The error counter will always be enabled for a multiple of 512 pattern bits for inhibit mode.

Table 13: Gating Input

innie iei enting input	
Interface levels	TTL levels
Pulse width	256 clock periods
Connector	SMA female

Connecting an external termination to the gating input will pull it low and disable the instrument error counters. Gating resumes when the Gating Input returns high.

AUX Output

This output can be used to provide either clock or data signals:

CLOCK: clock signals from the input or recovered clock signals in CDR mode

DATA: data after being compared with the threshold

Table 14: Specifications of AUX Out

Interface	AC coupled, 50Ω nominal
Amplitude	600 mV nominal
Connector	SMA female

Automatic Clock to Data Alignment

For data rates ≥ 620 Mb/s, an important feature of the SerialBERT error detector is the ability to automatically align the clock and data inputs such that the error detector samples are in the middle of the eye (in the time axis).

Figure 18: Clock-Data Sampling Point Search

0/1 Threshold Centre

There are several methods of determining the 0/1 Threshold of input signals at the error detector data input: Automatic Track and Automatic Center.

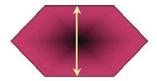


Figure 19: Automatic 0/1 Threshold Centre Search

Method 1: Automatic Track (Average 0/1 Threshold)

This continuously tracks the mean DC level of the input signal and adjusts the threshold accordingly. The 0/1 threshold calculated is displayed. Adjustment is made within approximately 100ms. limited to a 2V window selected by the user.

Method 2: Automatic 0/1 Threshold Search

Searches automatically for the threshold.

Automatic Centre

The error detector sets the 0/1 threshold midway between two points, the top and bottom of the eye, where the bit error ratio is equal to a selectable threshold. The eye height is calculated and displayed. It is limited to a 2V window selected by the user.

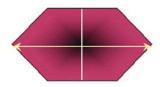


Figure 20: Clock-Data Sampling Point Search

Audible Error Indicator

Selectable to indicate errors, instantaneous error ratios, and errors above user-defined thresholds. On/Off volume control, and audible pitch changes with higher pitch corresponding to higher BER

Cable Droop Compensation

The N4901B SerialBERT 13.5 Gb/s provides an excellent waveform at the end of a 24" cable (N4910A). The cable droop is compensated and there is an excellent transition time <25 ps.

Mechanical Parameters

Operating Temperature	5 °C to 40 °C
Storage Temperature	-40 °C to +70 °C
Humidity	5 - 40 °C, 95% rel.Humidity
Power Requirements	100 - 240 VA, ± 10%, 47 -
	63 Hz, 350 VA
Physical dimensions	Width: 424.5 mm
	Height: 221.5 mm
	Depth: 580.0 mm
Weight (Net)	24.5 kg
Weight (shipping) (Max)	36.0 kg

Order Instructions

N4901B SerialBERT 13.5 Gb/s, USB stick

IO-Configuration:

N4901B-100 Pattern Generator & Error Detector

N4901B-200 Pattern Generator only N4901B-300 Error Detector only

Calibration/Test Data:

N4901B-UK6 Commercial Calibration with Test Data

Accessories:

N4910A Cable Kit: 2.4mm matched cable pair N4911A-002 Adapter 3.5mm female to 2.4 mm male N4912A 2.4mm, 50 0hm termination, male

Warranty

R1280A Standard Warranty:

1 year Return-to-Agilent Extended Warranty: 3 years Return-to-Agilent

Calibration

R1282A Calibration plans are available to order for 3

years; calibration interval 12 month

Related Literature Pub. No. • N4902B SerialBERT 7 Gb/s 5989-0399EN Datasheet Agilent Physical Layer Test 5988-9514EN **Product Overview** 5989-0089EN N4900 SerialBERT Jitter Fundamentals Application Note · Jitter Tolerance Testing 5989-0223FN 81250 ParBERT Application Note ParBERT 81250 5968-9188E Product Overview

Specification Assumptions

The specifications in this brochure describe the instrument's warranted performance. Non-warranted values are stated as typical.

All specifications are valid in a range from 5°C to 40°C ambient temperature after a 30 minute warm-up phase. If not otherwise stated, all inputs and outputs need to be terminated with 50 Ohms to ground. All specifications, if not otherwise stated, are valid using the recommended N4910A cable set (24 mm, 24" matched pair).

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlay Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test & measurement needs

Online assistance:

www.agilent.com/find/assist

Phone or Fax

United States: (tel) 800 829 4444

Canada:

(tel) 877 894 4414 (fax) 905 282 6495 China: (tel) 800 810 0189

(fax) 800 820 2816

Europe:

(tel) (31 20) 547 2323 (fax) (31 20) 547 2390

Japan:

(tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Korea:

(tel) (82 2) 2004 5004 (fax) (82 2) 2004 5115

Latin America: (tel) (650) 752 5000

Taiwan:

(tel) 0800 047 866 (fax) 0800 286 331

Other Asia Pacific Countries: (tel) (65) 6375 8100

(fax) (65) 6836 0252

Email: tm_asia@agilent.com

Product specifications and descriptions in this document subject to change without notice.

www.agilent.com/find/emailupdates
Get the lastest information on the products and applications you select.

www.agilent.com www.agilent.com/find/N4900_series www.agilent.com/find/product services © Agilent Technologies, Inc. 2005 Printed in The Netherlands, June 10th, 2005 5989-0398EN

"MS Windows XP" is a registered trademark of Microsoft Corporation

